HomeSubmit Link Latest Links Top Hits Advanced Search

Corp Directory Submit Your Business  - Listing Details
Submit Link Catalog

Title:Protein Microarrays Investment Required
Description:As scientists we are trained to be independent thinkers, and to value the expertise gained on the learning curve of new technologies. When it comes to protein microarrays, however, outsourcing or collaborating with an expert can accelerate the development process. “There is a serious investment required in assay development for microarrays,” says Stacey Clarken, VP of Commercial Operations for Applied Microarrays, Inc. “Our business model is to support customers ranging from those in early stage microarray development requiring assay optimization to clients ramping up production that need a partner with high capacity manufacturing.” The main driver for adaptation of arrays in the commercial market is certainly cost. The cost savings for microarrays over ELISA technology is significant as numbers of samples and biomarkers increases—the example given by Applied Microarrays for analysis of 20 biomarkers, 10 plates per biomarker, using ELISA (1 biomarker/plate, 200 plates total) or Multiplex Arrays of all 20 biomarkers: $93,000 for reagent and plate costs using ELISA, compared to $8200 for the same analysis performed on microarrays. This cost is for reagents and materials only, not including labor. Comparing bead-based assays to microarrays, beads consume less antibody than ELISAs, but more than microarrays. An example is given for 15ug of antibody used in 4 plates in a bead-based analysis compared to the same amount of antibody covering 64 plate-equivalents in microarray. It could be argued that assay development costs may be more significant for microarrays than for ELISA or bead-based assays. Thus the transition to microarrays may be more justified for highly repeated miassays compared to a limited study---pointing again to a broader adaptation of arrays in the diagnostic sector compared to academics. The greatest cost for arrays, as for other antibody-based diagnostics, is the protein and antibody content. For example, one high-throughput customer recently estimated it cost them $200 in reagents for a single slide assay, not including the cost of the printed content. With that sort of investment there is little tolerance for low-quality reagents or materials, and many researchers seeking ways to conserve costs as their projects expand. Our seals and chambers are designed to minimize the reagents required for hybridizing and staining microarrays, resulting in significant cost savings over some automated systems and better results than simple coverslip hybridization. At Grace Bio-Labs, life science products, we have also seen a surge in demand for our nitrocellulose film slides for protein microarrays from companies that are rapidly progressing the technology from discovery to diagnostics. Beyond the material costs, there are a number of our customers who work with precious clinical samples which are irreplaceable once spent. Thus minimizing reagent use and obtaining consistent materials and reagents as well as consulting with experts are key requirements to optimize your return on investment in protein arrays.